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moments are immediately seen to be zero by symmetry and the even moments
are computed using the following theorem. In all cases it 1s assumed that the
process begins indefinitely far 1n the past with 2r finite mtial moments.

THEOREM |: For integer r, the 2rth moment of a fust-order linear ARCH
process with aq> 0, @, > 0, exists if, and only if,

-
o [Ty-n<t
s=1
A constructive expression for the moments is given in the proof.

Proor: See Appendix.

The theorem 1s easily used to find the second and fourth moments of a
first-order process. Letung w, = (y/, y2),

2 2
E(w[i¢l_l)=(3(z)o)+ (331 6"“;)"‘1)w,_,,
I

The condition far the variance to be finite is simply that &, < |, while to have a
finite fourth moment 1t 1s also required that 3a} < 1. If these conditions are met,
the moments can be computed from (A4} as

{ 3af Hl—a?}
asy  Ewy= |l G-y |13 ]

Ay

L a

The lower element is the unconditional variance, while the upper product gives
the fourth moment. The first expression in square brackets 1s three times the
squared variance. For a, # 0, the second term is strictly greater than one
unplying a fourth moment greater than that of a normal random vanable.

The first-order ARCH process generates data with fatter tails than the normal
density Many statstical procedures have been designed to be robust to large
errors, but to the author’s knowledge, none of this hiterature has made use of the
fact that temporal clustermg of outliers can be used to predict their occurrence
and munimize their effects, Thus 15 exactly the approach taken by the ARCH
model

4 GENERAL ARCH PROCESSES

The conditions for a first-order linear ARCH process to have a finite variance
and, therefore, to be covariance stationary can directly be generalized for
pth-order processes.

299



SOAH Docket No. 473-21-0538
PUC Docket No 51415
CARD's 3rd, @ CARD # 3-22
Attachment B

Page 8 of 22
HETEROSCEDASTICITY 993
THEOREM 2: The pth-order linear ARCH processes, with aq> 0, a, ..., @,

> 0, 15 covariance stationary if, and only if, the associated characteristic equation
has all roots outside the umt circle. The stationary variance is given by E( y,’ =a,/

(1= Shia).
PrOGF: See Appendix.

Although the pth-order linear model 1s a convement spectfication, 1t is likely
that other formulations of the variance model may be more appropriate for
particular applications. Two simple alternatives are the exponential and absolute
value forms:

(16) k= exp{ag+ oy pl)),
(17) hL =0y + al|y1~l|'

These provide an tnteresting contrast. The exponential form has the advantage
that the variance is positive for all values of alpba, but 1t is not difficult to show
that data generated from such 2 model have infinite variance for any value of
@y 0. The implications of this deserve further study. The absolute value form
requires both parameters to be positive, but can be shown to have finite variance
for any parameter values.

In order to find estimation results which are more general than the hnear
model, general conditions on the variance model will be formulated and shown
to be mmplied for the linear process.

Let £ be a p X 1 random vector drawn from the sample space =, which has
elements & = (£,_,, ..., £, _,). For any £,, let £* bedentical, except that the mth
element has been multiplied by ~ 1, where m hes between 1 and p.

DermviTioN' The ARCH process defined by (1) and (3) s symmetric 1f
(a) &)= h(&) for any m and {,¢Z,
(b) 3h(&)/da, = 3n(E)/3e, for any m,r and €%,
() 3h(§)/3%,_,, = ~n(E ) /¥, _, for any m and £.eZ.

All the functions described have been symmetric. This condition 1s the main
distinction between mean and variance models.

Another characterization of general ARCH models is in terms of regulanty
conditions

Dermvimion The ARCH model defined by (1) and (3) 1s regular 1f
(a) mink($,)> 8 for some § > 0 and §,¢Z,
® E(8h(&)/30,118A(8) /0%l ¥rom-1)  eusts for all ,m, 2.
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The first portion of the defintion 1s very umportant and easy to check, as it
requires the variance always to be positive. This eliminates, for example, the
log-log autoregression The second portion 1s difficult to check 1n some cases, yet
should generally be true if the process is stationary with bounded derivauves,
since conditional expectations are finute if unconditional ones are. Condition (b}
15 a sufficient condition for the existence of some expectations of the Hessian
used in Theorem 4. Presumably weaker conditions could be found

THEOREM 3. The pth-order linear ARCH model satisfies the regularity condt-
tions, if ag > Oand ay, . ..y, 20

PrOOF. See Appendix.

In the estimation portion of the paper, a very substantial simplification results
if the ARCH process is symmetric and regular.

5 ARCH REGRESSION MODELS

If the ARCH random variables discussed thus far have a non-zero mean,
which can be expressed as a linear combination of exogenous and lagged
dependent variables, then a regression framework is apprapriate, and the model
can be written as in {4) or (5). An alternative interpretation for the model is that
the disturbances n a linear regression follow an ARCH process.

In the pth-order linear case, the specification and likelthood are given by

s I \‘/,_|~N(X,ﬂ,h(),

M= ag+ o€l v -+,
(18) &=y — X,
=1 él
T2

L= ~Ylogh,— 12 /h,

where x, may include lagged dependent and exogencus variables and an irrele-
vant constant has been omitted from the likehihood. This likelihood function can
be maximized with respect to the unknown parameters « and . Attractive
methods for computing such an estimate and its properties are discussed below

Under the assumptions in (18), the ordinary least squares estimator of 8 is still
consistent as x and € are uncarrelated through the definition of the regression as
a conditional expectation. If the x’s can be treated as fixed constants then the
least squares standard errors will be correct; however, if there are lagged
dependent variables in x,, the standard errors as conventionally computed will
not be consistent, since the squares of the disturbances will be correlated with
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squares of the x's, This is an extension of White’s [18] argument on heterosce-
dasticity and it suggests that using his alternative form for the covarance matrix
would give a consistent estimate of the least-squares standard errors.

If the regressors include no lagged dependent variables and the process is
stationary, then letung y and x be the TxX | and T X K vector and matnx of
dependent and independent variables, respectively,

E(ylx)=xB,

(19)
Var(y| x) = o7,

and the Gauss-Markov assumptions are statisfied. Ordinary least squares is the
best hnear unbiased estimator for the model in (18) and the variance estimates
are unbiased and consistent, However, maximum likelthood 1§ different and
consequently asymptotically superior; ordinary least squares does not achieve the
Cramer~Rao bound. The maximum-likelihood estimator 1s nonlmear and s
more efficient than OLS by an amount calculated in Section 6.

The maximum likelihood estsmator is found by solving the fust order condi-
tions. The derivative with respect ta A 1s

3l ex; L é
@0 m*w*mm(z*‘}'

The first term 15 the familiar first-order condition for an exogenous heterosce~
dastic correction; the second term results because 4, is also a function of the 87,
as in Amemiya [1). Substituting the linear variance function gives

i

, 2
ol - 1 Xy 1 & .
@h B T 2{ h ok ( X ’)%“ﬂ—ﬁr—;}«
which can be rewritten approximately by collecting terms in x and ¢ as
9l [ - & -2( .2
(22) “a—‘B‘ = ? gxlcr hl - ]g[alhm-/({l&j - hl+/)

:::l .
=z gx,c,s,.

The Hessian is

¥ xx 1 ok, 3k, (€

GBaRT Tk 27 B A\ h,
2e,x, 8h,+ e 1.2 [ ok
e aw\n om0 |
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Taking conditional expectations of the Hessian, the last two terms vamsh
because A, is entirely a function of the past. Simularly, €2/ 4, becomes one, since 1L
15 the only current value 1n the second term. Notice that these results hold
regardless of whether x, mcludes lagged-dependent vanables, The mformation
matrix is the average over all ¢ of the expected value of the conditional
expectation and 1s, therefore, given by

8%,
E( BB | 1)

I s S ML
_TE,:E[ ket 38 3B |

v

@) b= pDE

For the pth order linear ARCH regression this is consistently estimated by
, 2
A _ 1 X, X, €. s
R
’ t
By gathering terms n x;x,, (24) can be rewritten, except for end effects, as
4
] 1 ' - .
@9 = Zx,x,[h, Y426 zla}hﬁﬁ}
1 j=

g | ry g2
== > x/x .
b S sin

o a sumilar fashion, the off-diagonal blocks of the information matrix can be
expressed as:

1 { 0k 0k
6) %_?;E(ﬂ?mw .

The important result to be shown in Theorem 4 below 1s that this off-diagonal
block is zero. The implications are far-reaching i that estimation of « and 8 can
be undertaken separately without asymptotic loss of efficiency and theur var-
ances can be calculated separately.

TueoReM 4: If an ARCH regression model s symmetric and regular, then
$.5 =0.

Proo¥. See Appendix.

6 ESTIMATION OF THE ARCH REGRESSION MODEL

Because of the block diagonality of the information matrix, the estumation of «
and B can be considered separately without loss of asymptotic efficiency.
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Furthermore, either can be estimated with full efficiency based only on a
consistent estimate of the other. See, for example, Cox and Hinkley [6, p. 308).
The procedure recommended here 18 to mitially estimate 8 by ordinary least
squares, and obtain the residuals. From these residuals, an efficient estimate of o
can be constructed, and based upon these & estimates, efficient estimates of 8 are
found. The iterations are calculated using the scoring algorithm. Each step for a
parameter vector ¢ produces estimates ¢'*! based on ¢' according to

¢ 4t & 11 alf‘
) o't =o' +[&,] ?255’

where § and dl//d¢ are evaluated at ¢'. The advantage of this algorthm 1s
partly that it requires only first derivatives of the likelihood function 1 this case
and partly that tt uses the statistical properties of the problem to tador the
algorithm to this application

For the pth-order linear model, the scoring step for a can be rewritten by
substituting (12), (13), and (14) into (27) and interpreting y,z as the residuals ¢?,
The 1teration is simply

(28  ot'=a' 4 (FHEy

where
= (Leknn el )/,
F=(5,.... %)
fi= (e~ n)/h,
Fr= (e f).

In these expressions, ¢, 1s the restdual from iteration 1, A/ is the estmated
conditional variance, and a' is the estimate of the vector of unknown parameters
from iteration i. Each step 1s, therefore, easily constructed from a least-squares
regression on transformed vanables The variance-covanance matrix of the
parameters s consistently estimated by the inverse of the estimate of the
information matrix divided by T, which is simply 2('%)~". This differs slightly
from ¢%(#'7)"" computed by the auxiliary regression. Asymptotically, §2 = 2, if
the distributional assumptions are correct, but it 1s not clear which formulation 1s
better in practice.

The parameters in @ must satisfy some nonnegativity conditions and some
stationarity conditions. These could be imposed via penalty functions or the
parameters could be estimated and checked for conformity. The latter approach
1s used here, although a perhaps useful reformulation of the model might employ
squares to impose the nonnegativity constraiats directly:

_ 2 2.2 2.2
(29) ho=ogtaje_ + - e .
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Convergence for such an iteration can be formulated in many ways. Following
Belsley (3], a simple critenion 1s the gradient around the inverse Hessian. For a
parampeter vector, ¢, this 1s

a0 9___81’( i )"az

3\ 393 | 3

Using € as the convergence criterion 1§ attractive, as 1t provides a natural
normalization and as 1t 1s wierpretable as the remainder term in a Taylor-series
expansion about the estimated maxumum. In any case, substituting the gradient
and estimated information matnx in (30), @ = R? of the auxiiary regression.

For a given estimate of «, a scoring step can be computed to umprove the
estimate of beta. The scoring algorithm for B 18

G BT = [} L

Defining X, = x,7, and & = e,s,/r, with X and & as the corresponding matrix and
vector, (31) can be rewritten using (22) and (24) and ¢, for the estimate of ¢, on
the ith iteration, as

(32) B =B (FR)TIRE
Thus, an ordinary least-squares program can again perform the scoring iteration,
and (¥ %)"" from this calculation will be the final vanance-covanance matrix of
the maximum likelithood estimates of 8

Under the conditions of Crowder’s (7] theorem for martingales, 1t can be
established that the maximum likelihood esumators & and # are asymptotically
normally distributed with limiting distribution

JT(& - @) DN, 42},
(33 b
IT(B-B) SN0, 55

7 GAINS IN EFFICTENCY FROM MAXIMUM LIKELIHOOD ESTIMATION

The gamn in effictency from using the maximum-lkelithood estimation rather
than OLS has been asserted above. In this section, the gains are calculated for a
special case. Consider the linear stationary ARCH mode] with p = | and all x,
exogenous. Thus is the case where the Gauss-Markov theorem apples and OLS
has a vanance matrix oX(x'x)"' = EeXT,x/x,)~". The stationary varance is
o’ = oy /(1 — &)

The information matrix for this case becomes, from (25),

E[ Salx (B + 283/ H, .)}.
I
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With x exogenous, the expectation 18 only mnecessary over the scale factor.
Because the disturbance process 1s stationary, the variance-covariance matrix is
proportional to that for OLS and the relative efficiency depends only upon the
scale factors. The relative efficiency of MLE to OLS 1s, therefore,

R= E(hz— L+ 2511‘1!1/}112“)02‘

Now substitute h, = o + & €2, 0* = ay/1 — a, and y = &, /1 — «,. Recogniz-
g that €2, and ¢? have the same density, define for each

u=ey(l—e;)/a, .

The expression for the relative efficiency becomes

2
IET)) R=E(_.ll2‘)+2y15-—u—-3,
1+ yu (1+yu2)

where u has variance one and mean zero. From Jensen’s inequality, the expected
value of a reaiprocal exceeds the reciprocal of the expected value and, therefore,
the first term 1s greater than unity The second 1s positive, so there 1s a gain in
efficlency whenever y % 0. Eu~? 1s infinite because u? 15 conditionally chi
squared with one degree of freedom. Thus, the limit of the relative efficiency goes
to infimty with y:

Itm R—> o0,

y—oa
For @, close ta unity, the gain 1 efficiency from. using a maximum hkelihood
estimator may be very large.

8 TESTING FOR ARCH DISTURBANCES

In the linear regression model, with or without lagged-dependent variables,
OLS is the appropriate procedure if the disturbances are not conditionally
heteroscedastic. Because the ARCH model requires sterative procedures, it may
be desirable to test whether 1t 1s appropriate before going to the effort to estimate
it The Lagrange mujtpler test procedure is 1deal for this as in many sumdar
cases See, for example, Breusch and Pagan [4, 5], Godfrey (12}, and Engle [9].

Under the null hypothests, a; = a, - - - = &, =0 The test 1s based upon the
score under the nuil and the information matrix under the null Consider the
ARCH. model wtth h, = #(z,&), where h 1s some differentiable function which,
therefore, includes both the hnear and exponential cases as well as lots of others
and z,=(l,e2.,, .., e ») where ¢, are the ordwnary least squares residuals
Under the null, 4, is a constant denoted 4% Writing ak,/da = k'z], where A’ 15
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the scalar denvative of k, the score and mformation can be written as

2
al B A& A
LI P L= 20
da ’0 21:02,:z’(h° ) 24° !

and, therefore, the LM test statistic can be consistently estimated by
@) E =TS

where 2’ = (z}, . .., 2}), f* is the column vector of

ef
(ﬁ - ‘)'

Thus 1s the form used by Breusch and Pagan {4] and Godfrey [12] for testing for
heteroscedasticity. As they point out, all reference to the A function has dis-
appeared and, thus, the test is the same for any 4 which is a function only of z,e.

In this problem, the expectation required in the information matrix could be
evaluated quite simply under the null; this could have supenor finite sample
performance A second simplification, which is appropriate for this model as well
as the heteroscedasticity model, is to note that plim ff°/ 7 = 2 because normal-
ity has already been assumed. Thus, an asymptotically equivalent statistic would
be

(36) £= Tfﬂ;z(zlz)—lzrf(]/f()/ 0 TRZ

where R? 15 the squared multiple correlation between f¢ and z. Since adding a
constant and multiplying by a scalar will not change the R? of a regression, this
is also the R? of the regression of ¢? on an intercept and p lagged values of e?.
The statistic will be asymptotically distributed as chi square with p degrees of
freedom when the null hypothesis is true.

The test procedure is to run the OLS regression and save the residuals. Regress
the squared residuals on a constant and p lags and test TR Zasa xj This will be
an asymptotically locally most powerful test, a characterization 1t shares with
Ikelthood ratio and Wald tests. The same test has been proposed by Granger
and Anderson [13] to test for lugher morents i bilinear time seres.

9 ESTIMATION OF THE VARIANCE OF [INFLATION

Economac theory frequently suggests that econonuc agents respond not only to
the mean, but also to higher moments of economic random variables. In
financial theory, the variance as well as the mean of the rate of return are
determinants of portfolio decisions. In macroeconomics, Lucas [16], for example,

307



SOAH Docket No. 473-21-0538
PUC Docket No. 51415
CARD's 3rd, Q. CARD # 3-22

Attachment B
Page 16 of 22

HETEROSCEDASTICITY 1001

argues that the variance of wnflation 1s a determnant of the response to various
shocks. Furthermore, the vanance of inflation may be of independent interest as
it1s the unanticipated component which is responsible for the bulk of the welfare
loss due to inflation. Friedman [11] also argues that, as high inflation wilt
generally be associated with high variability of inflatton, the statistical relation-
ship between inflation apd unemployment should have a positive slope, not a
negative one as 1n the traditional Phullips curve.

Measuring the vanance of inflation over time has presented problems to
various researchers. Khan [14] has used the absolute value of the first difference
of inflation while Klein [15] has used a moving variance around a moving mean.
Each of these approaches makes very simple assumptions about the mean of the
distribution, which are inconsistent with conventional econometric approaches.
The ARCH method allows a conventional regression specification for the mean
function, with a variance which is permitted to change stochastically over the
sample period. For a comparison of several measures for U.S. data, see Engle
[10).

A conventional price equation was estimated using British data from 1958-I1
through 1977-11. It was assumed that price inflation followed wage increases;
thus the model is a restricted transfer function

Letting p be the fust difference of the log of the quarterly consumer price
index and w be the log of the quarterly index of manual wage rates, the model
chosen after some experimentation was

37 P=Bipat Bap ot Bapos+ Bp—w)_ +fBs.

The model has typicai seasonal behavior with the first, fourth, and fifth lags of
the fust difference. The lagged value of the real wage is the error correction
mechanism of Davidson, et al. [8], which restricts the lag weights to give a
constant real wage in the Jong run. As this 1s a reduced form, the current wage
rate cannot enter.

The least squares estimates of this model are given in Table 1. The fit is quite
good, with less than 1 per cent standard error of forecast, and all ¢ statistics
greater than 3. Notice that p_, and p_ 5 have equal and opposite signs, suggesting
that it is the acceleration of inflation one year ago which explains much of the
short-run behavior 1n prices.

TABLE I
ORDINARY LEAST SQUARES (36)*
Varsable Py Pos Pos (p—w_, Const ag (X107 %) a
Coeff, 0334 0408 ~ 0.404 — 00559 00257 89 0
St. Ber. 0.103 Q10 0.114 00136 0400572
¢ Stat 325 in 355 412 449

1Dependent variable p = lag(P) ~ log(F . |) where P 1s quarcerly UK consumer pace index w = lag(#)
where i/ 1s the U K. index of manual wage rates Sample period 1958-11 to 1977-f1
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To establish the rehiability of the model by conventional criteria, 1t was tested
for serial correlation and for coefficient restrictions. Godfrey’s [12] Lagrange
multiplier test, for serial correlaion up to sixth order, yields a chisquared
statistic with 6 degrees of freedom of 453, which 1s not significant, and the
square of Durbin's h is 0.57. Only the 9th autocorrelation of the least squares
residuals exceeds twa asymptotic standard errors and, thus, the hypothesis of
white noise disturbances can be accepted. The model was compared with an
unrestricted regression, including all Jagged p and w from one quarter through
six. The asymptotic F statistic was 2.04, which is not significant at the 5 per cent
level. When (37) was tested for the exclusion of w_, through w_,, the statistic
was 2.34, which is barely significant at the 5 per cent but not the 2.5 per cent
Jevel. The only vanable which enters significantly in either of these regressions is
w_g and it seems unattractive to include this alone.

The Lagrange multiplier test for a first-order linear ARCH effect for the model
m (37) was not significant. However, testing for a fourth-order linear ARCH
process, the chi-squared statistic with 4 degrees of freedom was 152, which is
highly significant. Assuming that agents discount past residuals, a linearly
declining set of weights was formulated to give the model

(38) b= ag+ o, (0de  + 0.3¢), + 026 5 + 0.0 )

which 1s used in the balance of the paper. A two-parameter variance function
was chosen because (t was suspected that the nonnegativity and stationarity
constraints on the o’s would be hard to satisfy in an unrestricted model. The
chi-squared test for a) = 0 in (38) was 6.1, which has one degree of freedom.

One step of the scoring algorithm was employed to estimate model (37) and
(38). The scoring step on o was performed first and then, using the new efficient
&, the algorithm obtains m one step, efficient estimates of . These are given in
Table 11. The procedure was also iterated to convergence by doing three steps on
a, followed by three steps on 8, followed by three more steps on e, and so forth.
Convergence, within 0.1 per cent of the final value, occurred after two sets of o
and # steps. These results are given in Table ITL.

The maxunum hikelthood estimates differ from the least squares effects primar-
Uy in decreasing the sizes of the short-run dynamic coefficients and increasing

TABLEIT

MaxiMum LIKELIHOOD ESTIMATES OF ARCH Mobet. (36) (37)
ONE-STEP SCORING ESTIMATES®

Varable Py P Pos (p— W)y Const. ag (% 107%) &
Caeff a2t0 0270 —0334 - 00697 00321 19 0.846
St Err. 0.110 0.094 0109 0117 000498 14 0.243
7 Stat. 190 2.86 306 598 644 1.32 3149

2Dependent vanable p = log(P) ~ log{P - ) where P « quarterly U K. cansuraer price tndex w = log{ #’) where
Was the U K wides of manual wage cates Sample period 1958-11 to 197711,
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TABLE I

MaxivuM Likerisoon EsttMates of ARCH Mopet (36) (37)
ITERATED ESTIMATES?

Vagiables Py Pox p-s (P —wloy Canst ag (%1079 N
Cocfl 0162 0264 ~0.325 ~00707 0.0328 14 0955
St. Eer 0108 00892 0 0987 0.0115 000491 85 G298
¢ Stat 150 296 3.29 617 867 1 56 3.20

*Dependent variable p = lag(£) — log(P . |) where P s quarterly U K consumer price wndex w = (0g( W) where W
15 the U K 1ndex of manual wage rates Sample penod 1958-11 to 1977-1T

the coeffictent on the long run, as incorporated 1n the error correction mecha-
mism. The acceleration term is not so clearly mmplied as in the least squares
estimates. These seem reasonable results, since much of the inflationary dynam-
s are estimated by a period of very severe inflation 1 the middie seventies.
This, however, is also the period of the largest forecast errors and, hence, the
maximum likebhood estimator will discount these observations. By the end of the
sample period, inflationary levels were rather modest and one might expect that
the maximum likelthood estimates would provide a better forecasting equation.

The standard errors for ordinary least squares are generally greater than for
maximum likelihood. The least squares standard errors are 15 per cent to 25 per
cent greater, with one exception where the standard error actually falls by 5 per
cent to 7 per cent. As mentioned earlier, however, the least squares estimates are
biased when there are lagged dependent vanables. The Wald test for o, = 0 1s
also significant.

The final esmates of 4, are the one-step-ahead forecast vanances. For the
one-step scoring estimator, these vary from 23 X 107% to 481 X 10~%. That 1s, the
forecast standard deviation ranges from 05 per cent to 22 per cent, which is
more than a factor of 4. The average of the A, since 1974, 15 230 x 1075, as
compared with 42 x 107¢ during the last four years of the sixties. Thus, the
standard deviation of inflation increased from 0.6 per cent to 1.5 per cent over a
few years, as the economy moved from the rather predictable sixties into the
chaotic seventies.

In order to determine whether the confidence intervals arising from the ARCH
maodel were superior to the least squares model, the outhiers were examined. The
expected number of residuals exceeding two (conditional) standard deviations 1s
3 5. For ordinary least squares, there were 5 while ARCH produced 3. For least
squares these occurred 1n *74-1, *75-1, *75-I1, *75-1V, and *76-II; they all occur
within three years of each other and, in fact, three of them are in the same year.
For the ARCH model, they are much more spread out and only one of the least
squares points remams an outher, although the others are stll large. Exanuning
the observations exceeding one standard deviation shows similar effects. In the
seventies, there were 13 OLS and 12 ARCH residuals outside one sigma, which
are both above the expected value of 9. In the sixties, there were 6 for OLS, 10
for ARCH and an expected number of 12. Thus, the number of outlers for
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ordinary least squares 1s reasonable; however, the timmg of their occurrence 1s
far from random. The ARCH model comes closer to truly random residuals after
standardizing for theiwr conditional distnbutions.

This example illustrates the usefulness of the ARCH model for improving the
performance of a least squares model and for obtaining more realistic forecast
variances

Unversity of Calfornia, San Diego

Manuscript received July, 1979 final reviston received July, 1981

APPENDIX
Proor aF THEOREM | Let
(A2 wi =,y ).
Furst, 1t 15 shown that there 1s an upper tniangular » X » matrix A and » X | vector b such that
(A2 E(w )= b+ Aw .y

For any zero-mean normal random varable », with vanance a?,

,
Eu¥y=o" J] (- 1)
=1
Because the conditional distrbutsor of y 1s nozmal

(A3) EQP [dioa) = Al H1(2j -0
e

= (o pL i+ ag)” Hl 27~ ).
I

Expanding this expression establishes that the moment 1s 2 hnear combination of w,_; Furthermore,
only powers of p less than or equa) to 2m are required, therefore, A in (A2) is upper toangular
Now

E{w, [ ¢-2) = b + A(h + Aw,_;)
or  general
E(w it )=+ A+ A%+ % A5+ A,

Because the series starts indefinutely far wn the past with 2r fine moments, the lumt as & goes to
infunity exsts if, and only 1f, all the eigenvalues of 4 lie within the unit circle
The limit can be written as

lin EQw, | i) = — A)"'b,
k-yon

which daes not depend upon the conditioning vanables and does not depend upon (. Hence, thus 15
an expression for the stationacy moraents of the unconditional distnbution of y.

(A4) E(w)=(1-4)""8
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It remaias only ta establish that the conditon in the theorem 1s necessary and sufficient to have all
cigenvalues lie within the unit ciecle As the matnix has already been shown to be upper tnangulac,
the diagonal elements are the eigenvalues From (A3), it is seen that the diagoaal elements are simply

s m
af” Hl(ﬁj— 1= Hlm@j -h=4,
i =

form=1,.. ,r. H 8 exceeds or equals unity, the eigenvalues do not lie 1n the umt ciccle Tt must
also be shown thatif 8, < 1, then 8, < | for allm < r Notiee that 8, is a product of m factors which
are monotomeally 1acreasing If the mth factor (s greater than one, then §,,_, will necessanly be
smaller than §,,. If the mth factor is less than one, all the other factors must also be less thaa one znd,
therefore, 4, _; must also have all factors less than one and have a vatue less than one. This
establishes that a necessary and sufficient condition for all diagonat elements to be less than one is
that 4, < |, which s the statement in the theorem. QED.

Proor oF THeorEM 2- Let
w = ()"1| )’rz—h . ‘y'z-ﬂ)
Then in terms of the companon matrx A,
(AS) EQw [, =b+Adw,_,
where b’ = (04,0, .,0)and

o) oy @, 4]
A=|1 0 0 Q
[ [}
a o0 S

Taking successive expectations

E(w, | )=+ A+ AT+ AN+ A

Because the series starts indefuntely far in the past with finite variance, (f, and only if, all e1genvalues
lie within the unit cirele, the lumat exists and 15 given by

(A6) b E(w |4, _0) = (= A)"'b

ko0
As this does not depead upon snttial conditions or on ¢ this vector 15 the common variance for all ¢
As 15 well known in time series analysts, this condition s equivalent to the condition that all the roots

of the characteqistic equation, (ormed from the s, lie outside the unit aircle. See Anderson [2, p.
177] Finaily, the limit of the first element can be rewritien as

(A7) Ey,zaao/(l— é“)) QED

=

Proor OF THEQREM 3 Cleacly, under the conditions, A(4) > «¢ > 0, establishing part (3) Let
YR A (L ICA VLI LI VA A Ny
= 20, E(1E - Pl ol - - )
Now there are three cases; ¢ >m, t=um, and r<m [f 1> m, thea §_, € §,_, . and the

conditional expectation of (£ _,| 18 finite, because the conditional density ts normal If 1 = m, then
the expectation becomes E([€ _,[°[¢,_ - () Agan, because the conditicaal density 15 normal, all
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maments exist ncluduig the expectation of the thied power of the absolute value If ¢ < »z, the
expectation 15 taken in two pacts, fust with respect to £~ 17— |

Pim e = 2 E (18l B 1Y) et}

P
=2ams{|£,_m|ao+ zla,fﬁ.,_,)lsn,w.}
p

P
= 20,80 E (& Yy} + Ela/¢l~'lnﬂl
I

In the final expression, the mtia) wmdex on ¢ is larger and, therefare, may fall o either of the
preceding cases, which, therefore, establishes the existence of the term. If there remain terms with
t 4 j < m, the recursion can be repeated As all lags are finite, an expression fac 4, ,,, can be written
as a constant times the third absolute moment of £, _,,, conditional on ,_,,_, plus another constant
times the fiest absolute moment As these are both conditionally normal, and as the constants must be
finite as they have a funte number of terms, the second part of the regulanty condition has been
established QED.

To establish Thearem 4, 2 caceful symmetry argument 1s required, beginning wuh the following
lemma.

LeMMA® Let u and v be any two random variables E(g(u, v)| v) will be an anti-symemnatric function
of v if g is an-symmerric in v, the conditional density of u (v 15 symmetrec v, and the expectanion
exists.

PROOEF:

E(g(u, —0)[ ~v) = — E(g(n,v)| —0} because g is anti-symmetric in o
= — E(g(%,0)|v) because the conditional density 1s symmetnc,

QED

PROOE OF THEOREM 4 The ¢, j element of 5 ts given by

{ 1 34 A
1y =L A AT
(on), 1T>7:E(k} %, 2,

IS )
B 2T>,“

"

’ [1 ah, ok,

> E| h7 T 3‘.*-; "/._‘..] by the chaina rule

[f the expectation of the term n square brackets, condiuonal on y, _,,_ .18 zero for all §, 4,4, m, then
the theorem s proven

£ | 8k, Ok ef ] dh, dh,
W B mxj,.W.Hf/-m-l X, W 5% 5, |2

because x, | 15 erther exogenous or it 1s a lagged dependent variable, 1 which case 1t 15 included in

[y
o 1L o, o L3 2
W % EP. [rem—t]| = h_rz T || [ 7y——
< 1 £ 3h, 3h, |
E Sy Ll v o
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by part (a) of the regulanty conditions and this integral 15 finite by part (b) of the condition Hence,
cach term 15 finite, Now take the expectabon in two steps, ficst wath respect to f,_,, This must
therefore also be finite

| ah 3k
£ 3 3 e [y -m) = 8le— )

By the symmetry assumption, 4, 1s symmetric 10 ¢, _ ., 34, /3¢, _,, 1 ant-symmetric Therefore.
the whole expression s anti-symmetre in ¢, _,,, which s part of the conditioning set , _,, Because 4
15 symmetric, the conditional density must be symmetric i ¢, _,, ard the lemma can be invoked to
show that g(e, . ,) 1s anh-symmetric

Finally, taking expectations of g conditional on ,_,,,_, gives zero, because the density of ¢,_,,
condttional on the past is a symmeteic (normal) density and the theorem 1s established QED
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ESTIMATING TIME VARYING RISK PREMIA IN THE TERM
STRUCTURE: THE ARCH-M MODEL'

By RoBERT F. ENGLE, DAvVID M. LILIEN, AND RussgLL P. RoBINS

The expectation of the excess holding yield on a long bond is postulated to depend
upon its conditional variance. Engle’s (1982a) ARCH model is extended to allow the
conditional variance to be a determinant of the mean and is called ARCH-M. Estimation
and inference procedures are proposed and the model is applied to three interest rate data
sets. In most cases the ARCH process and the time varying risk premium are highly
significant. A collection of LM diagnostic tests reveals the robustness of the model to
various specification changes such as alternative volatility or ARCH measures, regime
changes, and interest rate formulations. The mode! explains and interprets the recent
econometric failures of the expectations hypothesis of the term structure.

KeywoRDs: Term structure, financial models, ARCH, risk premium, heteroskedasticity,
nonlinear models.

1. INTRODUCTION

ALTHOUGH THE VALUATION of risk is the central feature of financial economics,
the standard methods for measuring and predicting risk are extraordinarily simple
and unsuited for time series analysis. As the degree of uncertainty in asset returns
varies over time, the compensation required by risk averse economic agents for
holding these assets, must also be varying. Time series models of asset prices
must therefore both measure risk and its movement over time, and include it as
a determinant of price. Any increase in the expected rate of return of an asset
as it becomes more risky will be identified as a risk premium.

The importance of such risk premia in the term structure of interest rates has
been highlighted by a series of papers which all find the traditional expectations
hypothesis inadequate to explain the observed data. For some recent examples
see Shiller (1979, 1981), Sargent (1979, 1972), Shiller, Campbell, and Schoenholtz
(1983), Mankiw and Summers (1984), and Campbell (1984). Some of these are
based upon tests which find the variance of long term rates too large to be
consistent with the expectations hypothesis. Others are based on regression tests
which essentially show that the implicit predictors of future interest rates, deriv-
able from the term structure, are inefficient and biased. Information available at
the time could have improved the accuracy of the forecasts. Stated another way,
these tests find that the one period rate of return which should, ex ante, be
unforecastable, could have been predicted using available information.

These findings are generally interpreted as implying either some form of less
than fully rational expectations, or time varying premia on different term debt.
Attempts by Shiller, Campbell, and Schoenholtz (1983) and Mankiw and Summers
(1984) to model particular forms of irrational expectations were unsuccessful.

'The authors are indebted to many for helpful comments including Bob Shiller, Larry Summers,
Clive Granger, Ross Starr, Ken Wallis, David Hendry, Larry Weiss, and James Tobin, but retain
responsibility for remaining errors. Computations were carefully carried out by Tim Bolleralev and
Yoahi Baba.
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Consequently, the main thrust of this literature is to introduce the possibility of
time varying term premia. Amsler (1984) and Pesando (1983) have extended
Shiller’s variance bounds to allow time varying term premia. Campbell (1984)
and Mankiw and Summers (1984) estimate or derive statistics about the required
properties of time varying term premia. The latter conclude: “Most of the changes
in the slope of the yield curve reflect these changing liquidity premiums or
expectations that do not satisfy the standard postulates of rationality, These
results suggest the importance of developing models capable of explaining fluc-
tuating lignidity premiums.”

The key postulate in the current paper is that time varying premia on different
term debt instruments can be well modeled as risk premia where the risk is due
to unanticipated interest rate movements and is measured by the conditional
variance of the one period holding yield. While this is in the spirit of Bodie,
Kane, and McDonald (1983) and Fama (1976), new econometric techniques are
needed to estimate and test this model and these are developed here.

The autoregressive conditional heteroscedasticity (ARCH) model introduced
by Engle (1982a), explicitly models time varying conditional variances by relating
them to variables known from previous periods. In its standard form the ARCH
model expresses the conditional variance as a linear function of past squared
innovations; in markets where price is a Martingale, price changes are innovations,
and this corresponds precisely to the Mandlebroit (1963) observation: “Large
changes tend to be followed by large changes—of either sign—and small changes
tend to be followed by small changes...” The ARCH model is used to provide
a rich class of possible parameterizations of heteroscedasticity.

This paper introduces the ARCH-M model which extends the ARCH model
to allow the conditional variance to affect the mean. In this way changing
conditional variances directly affect the expected return on a portfolio. This
resolves many of the empirical paradoxes in the term structure. Variables which
apparently were useful in forecasting excess returns are correlated with the risk
premia and lose their significance when a function of the conditional variance
is included as a regressor. Furthermore, the heteroscedasticity in the disturbances
had biased the test statistics, leading to the false finding of significant variables.

This model is applied to six month treasury bills, to two month treasury bills,
and to 20 years Aaa corporate bonds to determine whether there appear to be
time varying risk premia and how large they are. Section 2 develops a theoretical
model of the relationship between means and variances which is formulated as
a statistical model in Section 3. Section 4 describes the ARCH-M model and
Sections 5 and 6 present the applications. Section 7 is a summary.

2. A MODEL OF THE RELATION BETWEEN RISK AND RETURN

Risk averse economic agents require compensation for holding risky assets. In
the simplest set-up of one risky asset with normally distributed returns and one
riskless asset, the risk is measured by the variance of the returns from holding
the asset, and the compensation by a rise in the expectation of the return. The
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relation between the mean and the variance of the returns which will insure that
the asset is fully held in equilibrium will depend upon the utility function of the
agents and the supply conditions of the assets.

To investigate this relation we now suppose that in this two asset economy the
variance of the payoff of the risky asset may change over time and consequently
the price offered by risk averse agents will change over time. This equilibrium
price determines the relation between the mean and variance of the excess returns
from holding.the risky asset and therefore how the risk premium is related to
the variance of the returns.

Consider a world with two assets, one has price 1 and is perfectly elastically
supplied at a sure total rate of return . The other has a price p and yields a
random total return g (denominated in units of the numeraire) which has mean
# and variance ¢. Wealth W, measured in units of the riskless asset, is therefore
allocated between shares of the sure asset x, and shares of the risky asset s, so that

(1) W =ps+x.

The excess return per dollar invested in shares of the risky asset is given by
y=(qa/p)—r,

so that the mean and variance of the excess returns is given by

(2) E(y)=p=(8/p)~r, V()=0o’=¢/p"

Agents maximize expected utility of the end-of-period wealth, which, assuming
normality of the returns, means that only the first two moments of the distribution
matter. Under constant absolute risk aversion, expected utility can be expressed
by:

EU =2E(gs+rx) - bV(gs+rx)
and it will be maximized by choosing

3) sp = p/(bo?).

Now suppose ¢ has a time subscript and is known to agents although not to
the econometrician. Then the equilibrium values of p, u, o, and s will also vary
over time. If in equilibrium the value of the outstanding shares of the risky asset
remains constant, then the mean return will be proportional to the variance of
returns since s, p, in (3) is a constant.

A convenient assumption is that the riskless asset is held in zero net supply
so that r becomes endogenous. The value of the outstanding shares of the risky
asset is simply W. The mean and variance will therefore be proportional regardless
of the supply elasticity of s if both wealth and b are constant. Such a model,
however, leaves no role for price in evaluating risk.

If, instead, the physical number of shares is fixed so that s, = s and r is fixed,
then in equilibrium (4) can be rewritten

wl+ pr, = bso 26
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and, suppressing time subscripts,
(4) p=[—r+/r*+abso?0]/2 )

so that the mean will be zero when the variance is zero, the slope is always
positive, and for large variance the mean is proportional to the standard deviation.
Thus if ¢ varies over time, but 7, 5, and 6 do not, the econometrician should
expect to see a relation between observed means and variances of returns which
makes them move in the same direction but not proportionally.

For more general utility functions b will itself be a function of other variables
such as o?. Thus we can replace b in (4) with b(c?). Furthermore, there may be
some elasticity of supply of the risky asset so that

s=f(p)=1(8/(u+r))

can be substituted for s. With these two flexible functions it is possible to find a
wide range of relationships between observed means and variances.

Thus in general, one might expect the mean to increase less than in proportion
to the variance with the precise relation determined by the supply elasticity of
the risky (and possibly the riskless) asset and the risk preferences of agents. This
paper introduces some empirical evidence on this relationship.

3. FORMULATION OF THE MODEL

Letting u«, be the risk premium, y, the excess holding yield on a long bond
relative to a one period treasury bill, and ¢, the difference between the ex ante
and ex post rate of return which in efficient markets would be unforecastable,

(5) y=u+e, Var (g,|all available information) = k2.

It is assumed that the risk in holding a long bond is not diversifiable so that only
the variance matters. The initial specification takes the mean as a linear function
of the standard deviation:

(6) 6, =B +6h,.

A nonzero value of B might reflect the linearization of a nonlinear function such
as that derived above, or a preferred habitat argument. The choice of the standard
deviation represents the assumption that changes in variance are reflected less
than proportionally in the mean. Empirically, the log of %, is found to be even
better.

A complication in the interpretation of 8, arises from the differential tax
treatment of capital gains and interest income. Under the tax laws, long term
capital gains are taxed at a lower rate than ordinary interest income and short
term capital gains. This feature of the tax system makes a strategy of investing
in long term bonds more desirable than rolling over short term paper. Investors
can, to a large extent, treat one period capital losses as ordinary income for tax
purposes by selling the bond and realizing their losses. Short term capital gains
can be turned into long term capital gains for tax purposes by holding the bond
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fora year or longer. Because this choice can be made ex post, after Y, is observable,
risk neutral investors should be willing to hold long term bonds at a lower
expected pre tax yield than is paid on treasury bills. This tax advantage may
explain the fact that the average value of Y, for many types of long term bonds,
has been below the average short term treasury bill rate over the last 30 years.
We might therefore expect 8 <0.

To complete the specification of the model, 47, the conditional variance, must
be parameterized as a function of the information set available to investors. We
assume that the most useful information to agents are the previous innovations
or surprises g, If these have been large in absolute value then, extending
Mandlebroit’s observation, they are likely to be large in the future. In its simplest
form we postulate that

P
n bl = apta, ) Wi-‘le—i~

i=1
The conditional variance as observed by both the economic agents and the
econometrician is a weighted sum of past squared surprises. One can discount
older innovations in this weighting scheme.

Other variables which are in the information set at time t could also be
introduced into (7) in the fashion of more traditional heteroscedasticity correc-
tions. One such suggestion would be to use the squared changes in price as
analyzed by Mandlebroit. Such a specification misses the fact that in the bond
market a portion of the price change may be anticipated and this information is
unlikely to be useful in forecasting changes in variance.

In the next section, the estimation and testing of the model in (5), (6), and (7)
is considered in a more general context. In the following three empirical analyses,
many of the caveats discussed above are then put to test.

4. ESTIMATING AND TESTING THE ARCH-M MODEL

The economic model described in the previous section incorporates an impor-
tant extension of Engle’s (1982a) ARCH model or in fact any heteroscedastic
model; not only are the disturbances heteroscedastic, but the standard deviation
of each abservation affects the mean of that observation. In this section the
estimation and testing of such models, called ARCH in mean or ARCH-M models,
is discussed.

The general setup is given by

(8) Y,IX,, H,"‘N(,B’X,‘l‘Sh,, hrz),
(9) hl=a' W.+v'Z,

where X, and Z, are kx1 and jx1 vectors of weakly exogenous and lagged
dependent variables, as in Engle, Hendry, and Richard (1983). The vector Z,
includes a constant whose coefficient represents the constant variance component
of h,. The px1 vector 5/ = (g7, ..., £i-,) Where &, are the disturbances given
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by Y, ~p'X,— 6h,. The matrix W is a g x p array of fixed constants which may
be used to impose restricted parameterizations on the response of the conditional
variance to past squared residuals. In the most unrestricted case, W would be
the identity matrix. The variance parameter vectors a and y are therefore g x 1
and jx 1 respectively while the mean parameter vectors 8 and § are kx1 and
1% 1. These parameters can be combined into ¢'=(«a’, ¥, B, §), an m x 1 vector
where m=gq+j+k+1.

Conditional on the initial values of all the data, the log likelihood function
can be expressed as

(10) L(¢)=;Ll(¢); L(¢)=-log h,—e}/2h].

In practice, the presample values of the disturbances are set to their expectation,
zero. The first order conditions for a maximum of this likelihood are given by:

(11)  aL/ap =Y ([e2~hi-ndelh;") ahi/agp/2
% [e/hilaB 9¢

The derivatives of the parameters with respect to ¢ are stmply matrices with
zeros and ones which select which terms to include for each derivative. The
second line of (11) is the term relevant for GLS estimation of the regression
coefficients without ARCH complications, that is when a = 0. The expression in
(11) gives the standard ARCH model when § is zero.

The primary complexity introduced in this model comes in evaluating 3h%/d¢.
From (9) this depends upon the derivatives of previous innovations with respect
to the parameters. Yet these derivatives in turn depend upon the past derivatives
of h with respect to the parameters if § is nonzero. The desired derivatives must
be computed recursively from an assumption that the initial values do not depend
upon the parameters.

In the early analyses presented in Engle, Lilien, and Robins (1982) summarized
in Section 5, analytical derivatives were calculated recursively and used to evaluate
(11). However, numerical derivatives gave similar results, were simpler to compute
and gave added flexibility to changes in specification. They therefore are probably
the preferred approach for the ARCH-M model.

Estimation and testing can simply be carried out in terms of these derivatives.
aL/a¢ can be written compactly in terms of the T x m array S with typical element

[Sla=aL,/a¢,
as
(12) aL/a¢p = S'i
where i is a Tx 1 unit vector so the first order condition is simply

§'i=0,

PUC Docket No 51415
CARD's 3rd, Q # CARD 3-22
Attachment C

Page 6 of 17

320



SOAH Docket No. 473-21-0538

THE ARCH-M MODEL 397

The Hessian of the log likelihood is the sum of the Hessians of the ¢ conditional
log likelihoods, L,. Under the assumption that the likelihood function is correctly
specified,

#,=E[3L,/a¢ L,/d¢'l=—E[#*L,/ 3¢ 0]

where %, is the information matrix of the rth observation. Defining the information
in the sample # is the average of the information over each observation,

F=E[S'S/T].

Under slightly stronger conditions, S'S/ T is also consistent for 4.
A ready solation to the maximization of this likelihood function is to adopt
the Berndt, Hall, Haill, Hausman (1974) approach using the iteration

(13) o= +A(S'S)IS

with A as a step length which is adjusted from its a priori value of unity by a
simple line search, and S as the matrix of first derivatives evaluated at ¢

The likelihood is in the form analyzed by Crowder (1976). Under sufficient
regularity conditions, a solution to (13) will have the property that

(14)  (§'8)(¢*— %) 2 N, I)

where ¢* is the maximum likelihood estimator obtained from (13) and ¢° is the
true value of the parameters. Unlike the simple ARCH model, this information
matrix is not block diagonal between the parameters of the mean and the
parameters of the variance.

Pantula (1984) has carefully investigated regularity conditions sufficient to
guarantee (14) in the simple first order ARCH case. His conditions are stronger
than can be accepted for this study in that he requires the existence of eighth
order moments of the disturbance which are only finite for very small values of
the ARCH parameter. Weiss (1986) has suggested some slightly weaker condi-
tions; however, neither has addressed the ARCH-M model. Thus the appropriate-
ness of the asymptotic distribution theory for this analysis remains a conjecture
at this point.

Subject to the above caveat, inference procedures are available directly from
(14). In particular, Wald tests can be computed in standard fashion. Lagrange
multiplier tests can be simpler if the model has already been estimated under the
null hypothesis and are easily constructed from the matrix of scores, S. Suppose
the null hypothesis specifies that ¢ € @° which is a proper subset of @. Denote
by $° the matrix of scores calculated assuming the more general model to be
true, but evaluated at the parameter estimates under the null. The scores corre-
sponding to the restricted parameters are the Lagrange multipliers, and their
variances are given by the information matrix. The LM test can be constructed as

(15)  Dpp =i'S%(S¥S%)7'S%
= TR}
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where R3 is the uncentered R? achieved by regressing the unit vector on the
matrix of scores under the null. This statistic will asymptotically be chi squared
with the number of degrees of freedom of the restriction when the null is true.
This is easily computed from the R? of the first iteration of (13) starting from
the estimates found under the null. Thus the tests take a form familiar from Engle
(1982b, 1984) and it is recommended to construct a battery of diagnostics to
convey information on the validity of the model both to the user and the reader.

The LM tests are convenient for testing restrictions in either the mean or the
variance specification since reestimation may be costly and convergence is some-
times unsure. Tests are easily constructed for variables excluded from the mean
such as interest rates or other functional forms. It is just as simple to test variance
restrictions such as @ =0, « is a set of linearly declining weights, or elements of
v are equal to zero (thereby testing for variables excluded from k). Many of the
variance tests, however, may be interpreted as being on the boundary of the
admissible parameter space so that one-tailed tests or other adjustments may be
appropriate.

For the preferred models in this study h, depended only on the intercept and
a weighted average of past squared innovations where the weights are assumed
to be linearly declining. These strong restrictions are subjected to a great variety
of tests which allow changes in slope, seasonal spikes, freely estimated coefficients,
and a wide variety of observable variables such as interest rates, volatility, and
dummy variables for policy regimes. The models generally accept the more
parsimonious specification at reasonable significance levels either because they
are close to the true specification or because there is little power in the data to
discriminate between alternative variance formulations. If the models with less
restricted parameterizations are iterated toward convergence (for example to
calculate a Wald or a likelihood ratio test) we found it difficult to prevent
nonnegativities in the parameters regardless of the types of penalty functions or
transformations considered. In this case there were likely to be many local maxima
and generally the likelihood was ill-behaved. Thus the imposition of a par-
simonious specification for the variance function such as linearly declining weights
appears to be statistically supportable, computationally useful, and economically
sensible.

5. THE RESULTS FOR SHORT TERM T-BILLS

Using Salomon Brothers data from the Analytical Record of Yields from 1960
through 1984 II on 3 and 6 month treasury bills, the excess holding yield, y,, was
calculated as:

o =[+R)*/(1+rs)]—(1+7)
which is approximately

yvzle""rlH_r:
where R, is the yield on a six month bill and r, is the three month yield, each
measured at the beginning of the quarter. ’
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Regressing the excess holding yield on a constant gives

(16)  y=.142+e, 5=.351,
(4.04)

L=51.1.

Thus, the mean of the excess holding yield over the sample period is .142 per
cent at quarterly rates or .568 per cent at annual rates. The standard deviation
is .35 at quarterly rates. From the linearized expression for the excess holding
yield above, the average yield spread was half .568 per cent or .284 per cent at
annual rates. The maximum return on a three month balanced portfolio obtained
by borrowing at the three month rate and lending at the six, was 8.2 per cent at
annual rates. The worst return occurred in the subsequent quarter and was —3.1
per cent. The rates of return from such portfolios are quite erratic and, as expected,
are not large especially if transaction costs are important in forming these
portfolios.

A glance at the solid line in Figure 1 confirms the changes in variance which
are hypothesized by the ARCH-M model to account for the changing risk premia.
The vertical axis is measured in quarterly percentage rates of return. Clearly, the
period subsequent to the 1979 change in operating procedures shows substantially
more variability than earlier periods; however, there are also earlier episodes of
increased variability. Regressing the squared residuals on a fourth order linearly
declining weighted average of past squared residuals gives the ARCH test as
TR?=10.1 which would be X? if there were no ARCH. There is clearly strong
evidence of heteroscedasticity in the errors.

excess holding yietd

______ term premium

Quorterly Percentage Rotes

TR B Y

T Lo taaa]
1972 1975 1978 198L 1985

_2||l|lll‘lllll
1959 1962 1965 1968

Time
FIGURE 1—Excess hold yield of 6 month Treasury Bills and estimated risk premia.
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Regressing the excess holding yield on a constant and allowing ARCH disturb-
ances of fourth order gives:

(17)  y,=.048+e¢, h2=004+190 T wel,
(3.77) (95) (7.3) 7"

L=8517, w,=(5-7)/10 (r=1,...,4).

The ARCH effect is very strong, showing a ¢ statistic of 7.3, The magnitude is
also very large as values over 1 imply nonstationary variance processes. The
estimate of the mean changes dramatically when the high variance periods are
given less weight in the regression; the constant term premium fails to .048 per
cent at a quarterly rate or .2 per cent at annual rates.

The time varying risk premium has been swept into the disturbance term in
(17) and represents misspecification. The hypothesized true model, as presented
in Section 2, can be formalized as:

(18) yo=pB+6h+e,
g,/ past information~ N (0, h?),
h=y+a T wel,, w,=(5—17)/10 (r=1,...,4).

r=1,4
The maximum likelihood estimates and their ¢ statistics are:

(19)  y,=-.0241+.687 h,+e,
(~1.29) (5.15)

h2=.0023+1.643 w.e’_,,
(1.08) (6.30)

L=96.34, w,=(5-7)/10 (r=1,...,4).

As can be easily seen, all the slope coefficients are highly significant, indicating
that there is not only an ARCH effect (a # 0), but also a time varying risk premium
(8 #0). The expected riskless return is negative but not significantly so and the
minimum possible expected return which would be achieved if all recent forecasts
had been precisely correct, is very small and positive (.0009). The risk premium
is two thirds of the standard deviation of the return, which is quite substantial,
indicating stronger risk aversion by the borrowers than the lenders in this market.

The parameter in the ARCH equation is above one which implies that the
unconditional variance of the excess holding yield is infinite with a fat tailed
distribution. The conditional distribution,which for most purposes is the relevant
distribution, is of course still normal with a finite variance. An arbitrarily large
return could occur if a sufficiently long string of innovations were all large. Such
an episode would be easily reversed by a number of innovations near their median
value of zero. Simulations of this situation show rather sensibly behaved series
with larger bursts of volatility than would be expected from a marginally normal
random variable. It is possible that the maximum likelihood estimates will not
have their standard properties, but, as in the unit root case, they may have superior
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convergence rates and correctly calculated standard errors. As mentioned in the
previous section, the asymptotic distribution theory for this problem remains to
be solved. The infinite unconditional variance may be related to the frequent
failures of the variance bounds tests for interest rates.

A series of diagnostic tests were calculated for the model in (19). Although
several were significant, the tests for the functional relationship between the risk
and rate of return are of particular interest. LM tests for omitted variables h?,
exp (h,), and log (h,) were computed to test the assumed linearity between the
standard deviation and mean of returns. Economic theory has little to say on the
nature of this trade-off as it presumably depends on the risk preferences of the
traders. Only the log variable was significant with a test statistic of 4.13. Estimating
the model with both h, and log (h,) produced ¢ statistics of 2.0 on the log and
—.4 on the level and a log likekihood of L=101.62, thereby confirming that the
model with the log of standard deviation is superior to that in the level of the
standard deviation.

The final preferred model is therefore:

(20) y,=.355+.135log h, +¢,,
(4.38) (3.36)

h?2=.005+1.48 Y w.el,,
(2.22) (5.56) "'

L=10135, w, =(5~7)/10.

In this model all the coefficients are significant and the log likelihood is substan-
tially above that of (19). The minimum term premium occurring when all past
innovations are zero is now a very small negative value of —.008 per cent at
quarterly rates.

Several sets of diagnostic tests were performed with this model as well. These
are summarized in Table 1. Volatility is defined by:

Volatility= ¥ wyi.,  w.=(5-7)/10,
7=1,4

so that it differs from the ARCH variance by the time varying risk premium. One
would expect that the weighted average of residuals would give a better estimate
of the true residual variance than the same function of the dependent variable;
however there is no guarantee. Table I shows the robustness of the model in (20)
to a variety of types of misspecification. None of the tests is significant at the 5
per cent level. The tests check for nonlinearities in the risk premium, volatility,
structural shifts in October 1979, and misspecifications of the ARCH process
through omitted variables or inappropriately applied constraints. The ARCH
model with log Volatility alone achieves only log likelihood L=98.4 although
the significance and size of the variables is nearly the same as in (20).

The economically most interesting test is that for the yield spread and we turn
to a more careful analysis of this model, Mankiw and Summers (1984) (MS) find
that the yield spread is a significant and positive determinant of the excess holding
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TABLE 1
DIAGNOSTIC TESTS FOR ARCH-M MODEL (20)

Varlable TR? Distribution

Variables Omitted from the Mean

h, 31 ~ X%
h? 1.67 ~ X}
Volatility 1.44 ~ Xi
Log Volatility .50 ~ Xi
Post October 1979 Dummy 38 ~ xi
r .60 ~ Xi
R, .83 ~ Xxi
R, 29~ ¥
P 14 ~ X
Yiea 3.38 ~ xi
Variables Omitted from the Variance
Volatility .27 ~ ;(i
Post October 1979 Dummy .07 ~ Xi
r 1.64 ~ Xi
R, 1.60 ~ X1
R,—r, 90 o~ ¥
sz_., 31 ~ Xi
£ ) .62 ~ X1
E1=13 €y-25 €13 31 -~ X3
Sowel o, wy=(13~7)/78,7=1,...,12 76 ~ x:

yield. This implies a failure in the expectations hypothesis and a failure of an
alternative hypothesis that long rates are overly sensitive to short rates. Our data
set gives the following least squares estimate for this model:

(21)  y,==.50+244(R,—r)+e, o=.312
(—1.10) (5.46)

The corresponding coefficient and ¢ statistic in MS for the yield spread are 1.72
and 3.1 respectively. Their data set is a little shorter, from a different source and
embodies the Shiller linearizations.

Adding the yield spread to model (20) gives:

(22)  y,=.325+.130log h,+.392 (R, ~r)+e,,
(4.28) (3.59) (2.58)

h,=.004+1.64F w,el_,,
(1.38) (4.86)
L=103.48, w,=(5-1)/10 (r=1,...,4).

It now can be seen that by both Wald and LR tests the yield spread is a significant
determinant at the 5 per cent but not 1 per cent level and by the LM test it is
significant at the 10 per cent but not 5 per cent level. By economic standards the
size of the coefficient on the yield spread has fallen dramatically from the least
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TABLE 11

ESTIMATES OF YARIOUS ARCH-M MODELS
Excess HOLDING YIELD OF 6 MONTH T-BILLS

Jndep 59.1-84 2 59.1-111 71.4-842 59.1-79.3 61.3-74.1
Log h, 135 092 .196 177 093
(3.36) (3.88) (2.40) (2.96) (2.01)
Const. 355 272 455 446 261
(4.38) (4.31) (3.36) (3.72) (2.52)
ARCH a 1.48 1.67 1.49 1.25 1.20
(5.56) (5.15) (3.57) (4.60) (2.84)

squares fit. The rest of the parameter estimates are very close to those obtained
before in (20). Economically, it is not surprising to find some residual effect in
the yield spread. The expected value of the spread is approximately proportional
to the risk premium this period. Since it is highly autocorrelated, it will be a very
good predictor of the risk premium next period. If information other than past
innovations is useful in forecasting risk premia, then one might expect to find a
significant coefficient on the past yield spread. A useful extension would be to
allow the yield spread to directly influence the variance and consequently to
indirectly influence the risk premium.

As much of the variance in interest rates is concentrated at the end of the
sample period, the model was reestimated using subsets of the data. Surprisingly,
the results are relatively insensitive to the sample period both in magnitude and
in significance. See Table 11,

Figure 1 plots the excess holding yield and the estimated risk premium. The
scale is in quarterly percentage rates of return. The term premium rises to its
highest value (.41 per cent quarterly or 1.64 per cent annual rates) in the fourth
quarter of 1980. Over the sample period there are two values which are very
slightly negative. On average, the term premium is .14 per cent. Although the
most interesting and noticeable rise in the term premium is 1979-1984, there are
also relative increases in 1960, 1972, and 1975, each of which is accompanied by
an increase in volatility of the excess holding yield.

6. MODELLING OTHER INTEREST RATES

Two additional interest rate series have been modelled using the ARCH-M
model and more are in progress. The first is the monthly data set constructed by
Fama (1976) on two month vs. one month treasury bills from 1953.1 to 1971.7.
The data set differs from that used above in the sampling interval and in the
sample period. In this case the holding period is naturally taken to be one month
rather than one quarter and consequently the riskless asset is the one month
treasury bill rather than two or three month treasury bills. If a quarter is the
correct interval, then shorter lived assets must be rolled over at uncertain rates
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and therefore, the short term asset would be the risky one. For a theoretical
discussion of these issues see Woodward (1983).

The model in (18) was estimated directly although a longer lag was allowed
in the ARCH process to give a comparable memory to the variance estimator.
The results are:

(23) ¥, =—.00052+.80 A,, Rl=co+1.13 Y wel,,
(-1.2) 4.7 (8.6) =112

w,=(13—17)/78 (r=1,...,12).

These are quite similar to those in equation (19) where in both cases the ARCH
parameters are in the explosive range and the coefficient of the standard deviation
is highly significant with a value of .69 before and .8 here. The estimated risk
premium is plotted in Figure 2.

A somewhat different result was obtained using 20 year AAA corporate bonds
from 1953.1 to 1980.2. Assuming that the bonds are effectively infinitely lived,
the one quarter excess holding yield can be expressed in terms of the quarterly
yield to maturity, R,, and the three month treasury bill rate, r,:

=R —~r~1+R/R.

The average return from holding long term bonds and borrowing at the t-bill
rate is —.75 per cent at quarterly rates or —3 per cent at annual rates. Thus bond
holders have taken a loss over this sample period in spite of the fact that the
average long term rate was 5.9 per cent while the short term rate was only 4.6
per cent. This is a consequence of unexpected increases in interest rates possibly
due to unexpected acceleration of inflation.

Maximum likelihood estimation of (18) produced:

24) Yo =—2.8+.505 h, Bl=c+.75 T wel.,

(=2.2)(1.6) (2.6)
w,={(5—-7)/10 (r=1,...,4),
300
2
2
L 67 3
=
1953 4 1974 033

FIGURE 2—Conditional standard errors of one month forward rates.
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FIGURE 3-~Conditional standard errors of quarterly holding yields for Moody's Aaa bond.

for the fourth order ARCH-M model, and

(25) »,=-33+.651h,, W =co+.86 T wel.,
(—2.4)(1.9) (3.4) =112

w,=(13—-17)/78 (r=1,...,12),

for the twelfth order model.

These estimates differ from the short end of the spectrum in that they no longer
exhibit the explosive ARCH parameter, the coefficient on the risk premium is
roughly the same size but has a larger standard error, and the intercept is
considerably more negative. When (25) is estimated on data prior to 1978, the
coefficient on h, rises slightly to .84 but the ¢ statistic falls to 1.7. Thus the same
model appears to be appropriate; however, the significance falls due to the
omission of the highly volatile period of 1979 and 1980. The estimated risk
premium is plotted in Figure 3.

Further analysis of these two series is contained in Engle, Lilien, and Robins
(1982).

7. CONCLUSIONS

The precision with which agents can predict the future varies significantly over
time. In relatively quiet periods, like the mid-1960’s, relatively accurate forecasts
can be made and agents can speculate on the future without absorbing large
risks. In volatile periods, like the early 1970°s and early 1980’s, forecasts are less
certain and speculation is riskier. Risk premia therefore adjust to induce investors
to absorb the greater uncertainty associated with holding the risky asset.

In this paper we have extended the simple ARCH technique of measuring
conditional variances to the ARCH-M model where the conditional variance is
a determinant of the current risk premium, and thus enters the forecasting equation
of expected financial returns. Our results from applying this model to three
different data sets of bond holding yields are quite promising. ARCH was clearly
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present in the forecast errors of bond holding yields indicating substantial vari-
ation in the degree of uncertainty over time. This measure of uncertainty proved
very significant in explaining the expected returns in two of the data sets, and
was significant only at slightly more than the 5 per cent level for the third. We
therefore conclude that risk premia are not time invariant; rather they vary
systematically with agent’s perceptions of underlying uncertainty.

While our initial results suggest the promise of the ARCH technique to applica-
tions that require the measurement of uncertainty, we feel that the current model
is but a first step. The ARCH framework may be applied to more general models
of uncertainty and risk. For example, the capital asset pricing model suggests
that risk premia are not a function of simple risk, but rather of undiversifiable
risk. Risk premia therefore depend on the covariance of asset returns with the
returns of the market as a whole. The general ARCH framework may be extended
to allow conditional covariances to vary, resulting in time varying risk betas.
Such a model is beyond the scope of the current paper and is mentioned to give
some indication of possible extensions of our much simpler approach,
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PUC DOCKET NO. 51415

SOUTHWESTERN ELECTRIC POWER COMPANY’S RESPONSE TO
CITIES ADVOCATING REASONABLE DEREGULATION’S
THIRD SET OF REQUESTS FOR INFORMATION

Question No. CARD 3-23:

With reference to pages 48-51 of Mr. D’Ascendis” testimony, please: (1) list all regulatory cases
(by utility name, docket number, and filing date) in which Ms. Mr. D’ Ascendis has provided rate
of return testimony and used a non-price regulated proxy group to estimating a market risk
premium; (2) indicate all cases (by name, docket number, and date), a regulatory commission has
specifically used the equity cost rate results for Mr. D’ Ascendis’ non-price regulated proxy group
approach in arriving at an overall rate of return for a utility; and (3) provide copies of the ‘Rate of
Return’ section of the Commission’s decisions for all cases in which a regulatory commission has
adopted the equity cost rate results for Mr. D’ Ascendis’ non-price regulated proxy group.

Response No. CARD 3-23:

1. Mr. D’Ascendis does not use a non-price regulated group to estimate a market risk
premium in his analysis on pages 48-51 of his Direct Testimony.

2. Please refer to Mr. D’ Ascendis’ response to CARD 3-21, part (2). [
3. Please refer to Mr. D’Ascendis’ response to CARD 3-21, part (3). |

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc.

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. |
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|
SOUTHWESTERN ELECTRIC POWER COMPANY’S RESPONSE TO |

CITIES ADVOCATING REASONABLE DEREGULATION’S |
THIRD SET OF REQUESTS FOR INFORMATION

Question No. CARD 3-24: |

|
With reference to page 57 of Mr. D’Ascendis’ testimony, please provide: (1) the dates‘and the
amounts of equity flotation costs paid by the Company over the 2016-20 time period;'and (2)

copies of invoices and the associated checks which demonstrate that the Company paid the
flotation costs. ‘

Response No. CARD 3-24: i

As stated on page 57 of Mr. D’Ascendis’ testimony, no analyses regarding flotation co%ts were
performed in this proceeding.

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc.

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc. !
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SOUTHWESTERN ELECTRIC POWER COMPANY’S RESPONSE TO
CITIES ADVOCATING REASONABLE DEREGULATION’S
THIRD SET OF REQUESTS FOR INFORMATION

Question No. CARD 3-25:

With reference to pages 56-7 of Mr. D’Ascendis’ testimony and Schedule DVD-8, please provide
copies of all data, source documents, studies, and analyses used to justify and estimate the small
size premium.

Response No. CARD 3-25:

Please refer to the response to CARD 3-15.

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc.

Sponsored By: Dylan D'Ascendis Title: Director, ScottMadden, Inc.
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